FALA Educational Seminar 2025

Lisa Edwards, DVM, DACVIM, DACVECC

Heat stress/hyperthermia

Topics

Management of the neonatal cria

Thermoregulation

- Temperature is a major factor affecting tissue function
- Balance between heat input and output
- Food energy → heat
- Skin is the main source of heat loss

Thermoregulation

- Heat gain
 - Ambient temperature > body temperature
 - Radiant heat
- Heat loss
 - Radiation
 - Convection
 - Evaporation
 - Conduction

Thermoregulation

- Heat transfer within the body
- Body tissues are poor thermal conductors
- Heat is produced mainly in muscles and liver and eliminated through skin and respiratory tract
- Heat is most effectively transferred in the blood
- Blood collects heat from organs and transfers it to cooler parts of the body
 - Circulatory convection

38° C 36° C Warm 38° C 33° C Cold

Heat Stress

- Circulatory transfer of heat to the skin is increased
- Blood vessels dilate to increase blood flow → increases heat delivery → heat loss

Heat Stress

 Countercurrent heat exchange mechanisms are used to lose heat

Heat Loss: Convection

- Body warms air
- Natural convection
 - Warmed air rises from surface of animal
- Hair or fiber traps air and impairs convection

Heat Loss: Evaporation

- Continuous evaporative heat loss through skin and respiratory tract
- Evaporative cooling can be increased by:
 - Sweating
 - Panting
- Important mechanism of heat loss when ambient temperature approaches body temperature
 - Only way to lose heat when ambient temp > body temp
- Effectiveness reduced as relative humidity increases

Response to Heat Stress

- Thermoneutral zone: range of ambient temperatures where the body can maintain core temperature solely through regulating dry heat loss (skin blood flow)
- Initial response = vasodilation
 - More heat loss by radiation and convection
- Secondary response = evaporative cooling
 - Sweating, panting, both
- Behavioral methods
 - Seeking shade, standing in water,

Heat Stroke

- Heat production/input > heat output → body temperature rises
- Body temperature rises → metabolic rate increases
 → more heat is produced
- Panting/sweating can lead to dehydration and circulatory collapse, making heat transfer to the skin difficult
- Body temperature > 107 to 109*F
 - Cellular function impaired
 - Loss of consciousness
- Exertional vs non-exertional

Heat stress and hyperthermia in SAC

- Dromedary camel adapted to hot arid climate
 - Adapted to deal with hyperthermia and dehydration
- South American camelids evolved later and in a cool climate
 - Adapted to deal with cold, not excessive heat/humidity

Causes of Hyperthermia

Production of Body Heat

Packing Racing Breeding Fighting

Transport Prolonged Chased by carnivore

Normal body temperature

The Thermal Window

- Evaporative cooling via the thermal window
- Relatively fiberless area on the ventral abdomen, axillary region and inside of the thighs
- Skin is thinner with many blood vessels
- Sweat glands are more productive

Evaporative Cooling

- Skin temperature
- Ambient temperature
- Ambient humidity
- Air movement
 - Convection
- Insulation
- Radiant heat
 - Sun, heated surfaces

Fiber Coat

- Efficient insulating layer against cold
- Inhibits radiant heat from reaching skin
- Can aid or hinder evaporative cooling
- Heat dissipation is inhibited if fiber is:
 - Excessively long
 - Dirty
 - Matted
 - Wet

Signs of Heat Stress

Hyperthermia: Effects on Organs

- Hyperthermia of short duration and mild/moderate intensity may not have lasting adverse effects on organ function once the animal is cooled
- If severe or prolonged, animal may die due to multi-organ failure even if core body temperature returns to normal

Central Nervous System Effects

- Very sensitive to hyperthermia!
- Direct heat damage to neurons
- Secondary injury
 - Reduced oxygen to the brain
 - Electrolyte abnormalities
 - Blood clots
- Decreased mental function, weakness/inability to stans, convulsions, seizures
- Pregnant females → fetal brain damage and congenital anomalies

Reproductive System Effects

- Females
 - Abortion
 - Decreased birth weight of cria
 - Congenital defects
- Males
 - Decreased sperm count, infertility
 - Scrotal edema

Merck Manual Courtesy of Dr. LaRue Johnson

Respiratory System Effects

- 1.8*F increase in body temperature requires 10% more oxygen for proper function of body systems
- Temperature reaches 105.8*F

 respiratory system cannot supply enough oxygen by normal respiration alone
 - Respiratory rate increase
 - Open mouth breathing

Fowler VCNA

Digestive Tract Effects

- Signs of colic are common
- Blood shifted from gut to skin
 - Decreased blood flow → decreased function
 - Disrupted mucosal barrier
- Rumination and intestinal motility decreased
- Diarrhea

http://www.shagbarkridge.com/info/bloat.html

Cardiovascular and Clotting System Effects

- Increased heart rate
- Decreased blood pressure
- Shock
- Animals with pre-existing cardiac disease may have increased risk of the death
- Decrease platelet count
- Alterations in clotting times

Urinary and Muscular System

- Kidney injury
 - Muscle break down
 - Red blood cell breakdown
 - Dehydration
 - Caution giving Banamine
- Rapid muscle breakdown

Hyperthermia: Sequence of Events

Increased body temperature Increased heart and respiratory rates Redness of skin Sweating Hemoconcentration Body fluids shift from gut/liver to muscle/skin Decreased kidney function Decreased blood pressure Central nervous system damage Coagulation defects Death

Treatment of Hyperthermia: Cooling

- Apply cool water to the thermal window and directing a fan at the animal
 - Cool packs in axillary and inguinal regions
- Do not immerse in ice baths
 - Constriction of blood vessels in the skin prevents heat dissipation
- Other methods of cooling not associated with improved outcome:
 - Cold water enemas, stomach lavage
- Monitor temperature
- Discontinue cooling measures before temperature is normal

Veterinary Intervention

- Blood work
 - Organ function liver, kidney, muscle
 - Electrolytes
 - Lactate
 - White blood cell count
 - Clotting times
- IV fluid therapy
- Recumbency and sling care
 - Prognosis poor if unable to stand
- Antibiotic therapy
- Management of multiple organ dysfunction syndrome
- 50% survival reported in one case review

Hyperthermia Prevention

- Access to shade
- Fans in stall
- Pond or pool for self cooling
- Shady, sandy spot that can be moistened
- Maintain normal body condition
- Shear prior to onset of high heat and humidity
- Avoid work, stress, shearing, transport, capture, etc during the peak heat of the day

Hyperthermia Prevention

- Heat Index = apparent temperature
 - Relative humidity + air temperature
- Avoid non-essential handling when HI is 120 – 150
- Clinical signs seen at HI of 150 in one study

Questions?

California Wildfire Patients

Management of the Neonatal Cria

Parturition Events

Gestation is variably, average ~11.5 months (343 days)

As early as 320 days and as late as 375 days

Longer gestation if birthing in spring vs autumn

Parturition Events: Stage 1 Labor

Preparatory phase

1-6 hours

Signs

- Separation from herd
- Lack of interest in feed/grazing
- Humming
- Restlessness
- Frequent trips to communal defecation area
- Cushed with hind limbs out to one side

Parturition Events: Stage 2 Labor

- Expulsion of the cria
- Usually lasts 20 to 30 minutes, can take up to 1 hour
- If active straining without progression for 15 minutes
 → evaluate for malpresentation
- Cria should be in anterior dorsosacral position

Parturition Events: Stage 3 Labor

- Expulsion of the placenta
- Usually passed within 1 hour of delivery of the cria
 - Maximum 4 to 6 hours
 - Rarely retain placenta
 → oxytocin,
 prostaglandin
- Camelids do not consume the placenta

https://aubreyoaksalpacas.com/learn-about-raising-alpacas-introduction/postpartum-care/

Neonatal Cria Milestones

- Standing in 30 to 60 minutes
- Nursing in 2 to 4 hours
- Meconium should be passed by 18 to 20
 - Warm, soapy water enema if meconium retention
- Birth weights
 - Alpaca cria: 5.5 7 kg
 - Llama cria: 7 9 kg
 - May lose 0.25 kg in the first day, especially if weighed wet
 - Gain 0.25 to 0.5 kg per day

Cria Nursing

- Nurse frequently in the neonatal period
 - 2 to 3 times per hour, often less than 1 minute
- Spend short amount of time at each teat then move to the next
- Nursing excessively or for long periods → dam may have insufficient milk

Management of the Neonate

- Allow bonding to occur first
- Weigh cria
- Dip umbilical stump in antiseptic solution
 - 0.5% chlorhexidine
 - 2 3 % iodine tincture
- External umbilical stump is usually ~ 2 to 3 inches
 - Hold off/apply pressure for 10 to 15 minutes if hemorrhage
 - Ligature may predispose to abscess formation

Management of the Neonate

- If cold or wet, move inside with dam to reduce risk of hypothermia
 - Freshly bedded stall with straw
 - Heat lamp (fire hazard), blankets, warm bottles
- Cria jackets

Normal Vital Parameters

Heart rate: 70 to 100 bpm

Respiratory rate: 20 to 30 rpm

Temperature: 100 – 102*F

Colostrum

- Born with very low globulins due to type of placentation
 - Diffuse epitheliochorial
- Ensure colostrum consumption!
 - 10 -20 % body weight in 24 hours

Colostrum and Milk

- Failure of transfer of passive immunity is a major cause of mortality in crias
- Frozen camelid colostrum if available
 - Goat, sheep, cow as alternative
- Camelid milk
 - Higher sugar, less fat compared to domestic ruminants
 - Fresh or frozen cow or goat milk alternative
- Bottle feeding
 - 10 -15% of BW over 24 hours
 - Start with every 2 hour feedings

Assessment of Immunoglobulins

- When to check...always a good idea
- Cria factors
 - Low birth weight, unwitnessed intake, premature, congenital defects that may prevent adequate nursing
- Dam factors:
 - Mastitis, poor udder development, poor colostrum quality, dystocia, maiden dam
- IgG peaks at 24 to 48 hours

Assessment of Immunoglobulins

- Radial immunodiffusion is the most accurate
 - Not stall side (need 24 hours)
- IgG > 800 mg/dl to insure cria
- Most normal crias are 1,700 2,300 mg/dl
- 36 hours of age likely the ideal time to check
- Total protein > 5.5 g/dl
 - <4.5 g/dl = failure of passive transfer
- Globulin 2.3 g/dl = IgG 1,000 mg/dl
- Sodium sulfate turbidity test

Congenital Defects

- Choanal atresia
- Cleft palate
- Atresia ani or coli
- Vulvar hypoplasia
- Cardiac defects
- Musculoskeletal
 - Angular limb, luxating patelling, etc

Questions?

- Lisa A. Edwards, DVM, DACVIM (LAIM), DACVECC
- ledwards46@ufl.edu

